Special layout models

Chapter 7 (Warehouse Operations) Chapter 10 (Facility Planning Models)

Machine layout model Storage layout planning Warehouse layout model

Machine Layout Models

- Objective:
 - To arrange machines on the shop floor in such a way so that the total cost is minimal.
- So far, the layout models were aggregate in nature
- Machine layout models address additional issues:
 - The interface points for incoming and outgoing parts for individual machines are usually at fixed locations (pick-up and delivery locations) relative to the entire work envelop of the machine
 - Minimum space between machines must be provided to accommodate access to machines for maintenance and service, and allow enough space for material handling devices and in-process storage areas

Machine Layout Models Basic layout patterns

Single-Row Machine Layout

Double-Row Machine Layout

Multi-row Layout

Single row machine layout model

Let

 x_i^P = location of pick-up point of machine *i*, *i* = 1, 2, ... *n*

 x_i^D = location of delivery point of machine *i*

 w_i = width of machine *i* oriented parallel to the aisle

 a_{ij} = minimum clearance between machines *i* and *j*

 $c_{ij} = \text{cost per trip per unit distance from machine } i \text{ to } j$

 f_{ij}^{L} = total loaded material handling trips from machine *i* to machine *j*

 f_{ij}^{E} = total empty (deadhead) material handling trips from machine *i* to machine *j*

Single row machine layout model

The single-row model formulation is as follows:

Minimize TC =
$$\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} (f_{ij}^{L} d_{ij}^{L} + f_{ij}^{E} d_{ij}^{E})$$

The objective function gives the total cost of material handling where

 $d_{ij}^{L} = |x_{i}^{P} - x_{j}^{D}|,$ loaded travel distance $d_{ij}^{E} = |x_{i}^{D} - x_{j}^{P}|,$ empty (deadhead) travel distance

These constraints ensure the required distance between workstations:

$$|x_i^P - x_j^D| \ge \frac{1}{2}(w_i + w_j) + a_{ij}, i = 1, 2, ..., n - 1;$$

$$j = i + 1, ..., n \text{ for loaded trips, and}$$

$$|x_i^D - x_j^P| \ge \frac{1}{2}(w_i + w_j) + a_{ij}, i = 1, 2, ..., n - 1;$$

$$j = i + 1, ..., n \text{ for deahead trips.}$$

Simplified single row machine layout model **Assumptions**

• We will assume that pick up and delivery point for each machine is located at the midpoint along the edge of the machine work area parallel to the aisle. $x_{ij}^{P} = x_{ij}^{D}$

Loaded and deadhead distances are the same

$$d_{ij} = d_{ij}^L = d_{ij}^E$$

• We further assume that loaded and deadhead trips are the same $f_{ij} = f_{ij}^{L} + f_{ij}^{E}$

Simplified single row machine layout model **Minimum distance**

The minimum distance between Machine 1 and Machine 2:

$$\min d_{ij} = \frac{w_i + w_j}{2} + a_{ij}$$

Simplified single row machine layout model Solution

- Determine the first 2 machines (i*and j*) to enter the layout by computing max c_{ij}*f_{ij}
- Place *i**and *j** adjacent to each other. There is no difference between the placement order i*- j* or j*-i*.
- Place the next machine k* in the layout. Decide whether k* will be located to the left side or to the right side of the set of machines already in the layout, based on *Relative Placement Cost (RPC*).

- where A...set of all located machines
 U...set of all machines not yet located
- Continue until all machines are located.

- Four machines should be located in a department along an aisle. The dimensions of the machines and the material handling trips between them are given below. Consider c_{ij} = 1 and a_{ij} = 1
- Decide about the placement order.
- > Calculate the total cost for the optimal placement.

Machine dimensions

Machine	1	2	3	4	
Dimensions	2x2	3x3	4x4	5x5	

Number of trips

	1	2	3	4
1	-	10	5	6
2	8	-	3	8
3	7	9	-	4
4	5	11	13	-

Transform the From-To chart into Flow-Between chart.

- Determine the first 2 machines (i*and j*) to enter the layout by computing $max c_{ij}*f_{ij}$ $max c_{ii}*f_{ii} = 19$
- First two machines to enter the layout will be 2 and 4
- A={2,4} and U={1,3}

- Evaluate the possible placements of the machines 1 and 3:
- Options:
 - Machine 1:
 - From the left: 1-2-4
 - From the right: 2-4-1
 - Machine 3:
 - From the left: 3-2-4
 - From the right: 2-4-3

Flow-between matrix

	1	2	3	4
1	-	18	12	11
2		-	12	19
3			_	17
4				_

• **1**-2-4

• RPC = $f_{12}d_{12} + f_{14}d_{14} = 18*3.5 + 11*8.5 = 156.5$

• RPC = $f_{21}d_{21} + f_{41}d_{41} = 18*9.5 + 11*4.5 = 220.5$

Flow-between matrix

	1	2	3	4
1	-	18	12	11
2		-	12	19
3			-	17
4				-

• **3-2-4**

• RPC = $f_{32}d_{32} + f_{34}d_{34} = 12*4.5 + 17*9.5 = 215.5$

- **1**-**2-4** → RPC = 156.5
- 2-4-1 → RPC = 220.5
- 3-2-4 → RPC = 215.5
- 2-4-3 → RPC = 219.5
- The min RPC is for order **<u>1-2-4</u>**
- Evaluate the possible placements of the machine 3:
 - Options:
 - From the left: **3-1-2-4**
 - From the right: 1-2-4-3

Flow-between matrix

	1	2	3	4
1	-	18	12	11
2		-	12	19
3			-	17
4				-

• **3**-1-2-4

• RPC = $f_{31}d_{31} + f_{32}d_{32} + f_{34}d_{34} = 350.5$

• **1-2-4-3**

• RPC = $f_{13}d_{13} + f_{23}d_{23} + f_{43}d_{43} = 430$

Flow-between matrix

	1	2	3	4
1	-	18	12	11
2		-	12	19
3			-	17
4				-

- Total cost calculation:
 - TC=18*3.5+12*4+11*8.5+12*7.5+
 +19*5+17*12.5 = 602

Storage operations

- Storage the physical containment of finished goods, raw materials, supplies or in process material
- Objectives:
 - Maximize space utilization
 - Maximize equipment utilization
 - Maximize labor utilization
 - Maximize accessibility of all materials
 - Maximize protection of all materials
- Accounts for around 15% of warehouse operating expenses
 - In general, the smaller the handling unit, the larger the handling costs

Storage operations

 Stock Keeping Unit (SKU) – The smallest physical unit of a product tracked by an organization

Storage Layout Methods

- **Dedicated Storage** (fixed-location storage)
 - Each SKU is assigned to a <u>specific storage location</u> or set of locations.
 - Storage locations can be arbitrarily determined, such as part number sequence, or they can be determined based on the SKU's activity level (number of storages/retrievals per unit time) and inventory level.
 - Number of storage locations <u>is the sum of the maximum inventory</u> <u>level of each SKU</u>.
 - Space requirement to store the maximum amount ever on hand
 - Advantage: lower handling costs
 - but requires more information, careful estimates and more management

Storage Layout Methods

- Randomized Storage (random-location storage)
 - An individual stock keeping unit (SKU) can be stored in <u>any available</u> storage location.
 - Each unit of a particular product is equally likely to be retrieved when a retrieval operation is performed. Likewise each empty storage slot is equally likely to be selected for storage when a storage operation is performed.
 - Retrievals are first-in first-out (FIFO)
 - The quantity of items on hand is the average amount of each SKU
 - Storage requirement not known, but upper bound can be computed
 - Advantage: <u>lower space costs</u>

Storage layout planning

Principles of efficient storage planning

- Similarity
 - Receiving, shipping and storing together
- Size
 - Variety of storage location sizes
- Characteristics
 - Perishable, crushable, hazardous items, etc.
- Space utilization
 - Space conservation
 - Materials accessibility
- Popularity
 - Popular items close, in deep storage areas
 - Receiving/shipping ratio

Storage layout planning Principles – space utilization (accessibility)

Proper layout

Storage layout planning Principles – space utilization

- Honeycombing
 - Wasted space that results because a partial row or stack cannot be utilized because adding materials would result in blocked storage.

Storage layout planning Principles - popularity

- Store the most popular items in a way that minimizes the travel distance
- Pareto law!
 - 85% of the turnover will be a result of 15% of the materials stored

	Distances from	Storage Deput				
	reference point	3 units	2 units	1 unit		
T he for a star (Distance to A6	2	2	2		
The impact of	Distance to A1	5	5	7		
storage depth	Distance to B6	4	5	8		
on travel	Distance to B1	7	8	13		
distances:	Average travel distance	4.5	5	7.5		

Storage layout planning Principles - popularity

Position based on the Receiving/Shipping Ratio

Example

Determine the positions for the products A-H along the main aisle given the layout below and the following information:

						Average	
				Quantity per	Trips to	Customer	Trips to
			Product	Receipt	Receive	Order Size	Ship
			А	40 pallets	40	1.0 pallet	40
			В	100 pallets	100	0.4 pallets	250
Receive	Main Aisle	Ship	С	800 cartons	200	2.0 cartons	400
			D	30 pallets	30	0.7 pallets	43
			Е	10 pallets	10	0.1 pallets	100
			F	200 cartons	67	3.0 cartons	67
			G	1000 cartons	250	8.0 cartons	125
			Н	1000 cartons	250	4.0 cartons	250

Calculate Receiving/Shipping Ratio for each item

			Average		
	Quantity per	Trips to	Customer	Trips to	
Product	Receipt	Receive	Order Size	Ship	Receiving/Shipping Ratio
А	40 pallets	40	1.0 pallet	40	1.0
В	100 pallets	100	0.4 pallets	250	0.4
С	800 cartons	200	2.0 cartons	400	0.5
D	30 pallets	30	0.7 pallets	43	0.7
Е	10 pallets	10	0.1 pallets	100	0.1
F	200 cartons	67	3.0 cartons	67	1.0
G	1000 cartons	250	8.0 cartons	125	2.0
Н	1000 cartons	250	4.0 cartons	250	1.0

Rules of positioning the items in the warehouse:

- ratio < 1.00 => closer to shipping
- ratio > 1.00 => closer to receiving
- Position the items in order of importance of being close to shipping or receiving

- Quantitative model for determination of the location of products for storage and warehouse
- We assume
 - Dedicated storage layout
 - Rectilinear distances

• The objective is to minimize f_k which is the expected distance traveled between storage location k and the docks

- Procedure for warehouse design which minimizes the distance:
- 1. Number the products according to their T_i/S_i

$$\frac{T_1}{S_1} \ge \frac{T_2}{S_2} \ge \dots \ge \frac{T_n}{S_n}$$

where T_{j} number of in/out trips for product j S_{j}number of storage locations required for product j

- 1. Compute the f_k values for all storage locations
- 2. Assign product 1 to the S₁ storage locations having the lowest f_k values; assign product 2 to the S₂ storage locations having the next lowest f_k values; and so on....

Warehouse layout model **Example**

- Warehouse given below has four docks. Docks P1 and P2 are for truck delivery (60% of the all the movement, with each dock equally likely to be used) and docks P3 and P4 are for rail delivery (remaining 40% is equally divided between P3 and P4)
- There are 3 products A (3600 ft² with 750 loads per month), B (6400 ft² with 900 loads per month) and C (4000ft² with 800 loads per month) which should be stored in the warehouse.

Design a warehouse layout

Warehouse layout model **Example**

- 1. Number the products according to their T_i/S_i
 - Number of storage bays required for each product:
 - $S_A = 3600/400 = 9$ $S_B = 6400/400 = 16$ $S_C = 4000/400 = 10$

• Calculate
$$T_j/S_j$$
 for each product:
 $\frac{T_A}{S_A} = \frac{750}{9} = 83.33; \quad \frac{T_B}{S_B} = \frac{900}{16} = 56.25; \quad \frac{T_C}{S_C} = \frac{800}{10} = 80$

• Rank the products:

$$\frac{T_A}{S_A} \ge \frac{T_C}{S_C} \ge \frac{T_B}{S_B} \Longrightarrow \begin{array}{ccc} \text{1. A} \\ \text{2. C} \\ \text{3. B} \end{array}$$

Warehouse layout model Example

2. Compute the f_k values for all storage locations

$$f_k = \sum_{i=1}^m p_i d_{ik}$$

 $f_1 = 0.3*40 + 0.3*60 + 0.2*180 + 0.2*200 = 106$ $f_{29} = 0.3*120 + 0.3*100 + 0.2*100 + 0.2*80 = 102$

$$w_{1} = 0.3 P_{1}$$

$$w_{2} = 0.3 P_{2}$$

$$\frac{106_{1} 110_{2} 114_{3} 118_{4} 122_{5} 126_{6} 130_{7} 134_{8}}{166_{14} 110_{15} 114_{16}}$$

$$P_{3} w_{3} = 0.2$$

$$\frac{76_{17} 80_{18} 84_{19} 88_{20} 92_{21} 96_{22} 100_{23} 104_{24}}{86_{25} 90_{26} 94_{27} 98_{28} 102_{29} 106_{30} 110_{31} 114_{32}}$$

$$P_{4} w_{4} = 0.2$$

Warehouse layout model Example

3. Assign product 1 to the S₁ storage locations having the lowest f_k values; assign product 2 to the S₂ storage locations having the next lowest f_k values; and so on....

	1.	. /	4		2. (2		3. E	3				
	S ₄	<i>,</i> =	9		S _c =	10		S _B =	= 16				
	Cell#	Fj	Product	Cell#	Fj	Product	Cell#	Fj	Product	Cell#	Fj	Product	
ſ	17	76	А	11	94	С	14	106	В	38	126		
	18	80	А	27	94	С	30	106	В	7	130		
	19	84	А	22	96	С	33	106	В	39	130		
	9	86	А	12	98	С	2	110	В	8	134		
	25	86	А	28	98	С	15	110	В	40	134	R	
	20	88	А	23	100	С	31	110	В				
	10	90	А	13	102	С	34	110	В				
	26	90	А	29	102	С	3	114	В			Tho	remaining
	21	92	А	24	104	С	16	114	В				U U
				1	106	С	32	114	В			storag	ge bays are
							35	114	В			ava	ilable for
							4	118	В			equip	ment, WC,
							36	118	В			• •	ices, etc.
							5	122	В			011	
							37	122					
							6	126	В				

Warehouse layout model Example

Final layout which minimizes expected distance traveled per unit time

Next lecture

Quiz #4