Plan for the following lectures

- Lecture I: Course outline and project
- Lecture 2: Product, process and schedule design I.
- Lecture 3: Product, process and schedule design II.
- Lecture 4: Product, process and schedule design III.
- Lecture 5: Flow, space and activity relationships I.

Project proposals! → September 20

Lecture 6: Quiz #1 → September 26

Plan of the lecture

- Introduction (Chapter I)
 - Facilities planning defined
 - Objectives of facilities planning
 - Continuous facilities planning
 - Significance of facilities planning
- Product, process and schedule design (Chapter 2)

Facilities planning defined

- Facilities planning determines how an activity's tangible assets best support the activity's objective.
- Facilities planning:
 - Facilities location
 - Facilities design
 - Facilities systems design
 - Layout design
 - Handling systems design
- Facilities planning combines the efforts to determine location of a facility and design of it

Facilities location

• The placement of the facility

• Factors:

- Closeness (to the market, to the raw materials, to the suppliers, to other facilities, to the competitors)
- Geographical area (zoning, transportation access, labor, demographics, climate, environmental considerations)
- Fixed and recurring costs

Facilities design

- Facility systems design
- Layout design
- Handling system design

Facility systems design

- Structural systems, enclosure systems, atmospheric systems, electrical and lighting systems, communication system, life safety systems, sanitation system, etc.
- What systems are required
- Where they are required
- Integrating the systems into the overall facility

Layout design

- Layout for production areas and production-related and support areas
- Consists of all equipment, machinery and furnishing within the building envelope
- Determination of:
 - Block layout relative locations and sizes of the planning departments
 - Detailed layout exact location of all equipment and storage areas

Handling system design

- The mechanisms needed to satisfy the required facility interactions
- It consists of materials, personnel, information and equipment-handling systems required to support production
- Receiving, storing, retrieval, transporting, packaging and shipping, postal system, personnel transit system

• Which comes first, the material handling system or the facility layout?

BOTH!

• The layout and the handling system should be designed simultaneously

Objectives of Facilities Planning

- Improve customer satisfaction
- Maximize speed
- Reduce costs
- Integrate the supply chain
- Support the organization's vision
- Effectively utilize resources
- Maximize return on investment (ROI)
- Maximize return on assets (ROA)
- Be easy to adapt and to maintain
- Provide safety for employees

Objectives of Facilities Planning

- Four main issues when designing a facility:
 - Customers
 - Internal efficiency
 - Work environment
 - Integration into the supply chain

Main features of facilities

• Flexibility

 Flexible facilities are able to handle a variety of requirements without being altered

Modularity

 Modular facilities include systems that cooperate efficiently over a wide range of operating rates

Upgradeability

 Upgraded facilities easily incorporate advances in equipment systems and technology

Adaptability

- Considering the
 - Calendar
 - Cycles
 - Peaks

Selective operability

- Understanding how each facility segment operates
- Allows contingency plans to be put in place

Facilities planning as continuous activity

- Constant reevaluation and replanning of facilities, and continuous improvement
- Why replanning facilities?
 - Economic considerations
 - Employee health and safety
 - Energy conservation
 - Community considerations
 - Disabilities considerations
 - Fire protection
 - Pilferage

Significance of facilities planning

- Facilities planning is one of the core areas in industrial engineering field
- Can learning facilities planning contribute to the economy?
 - In 1999, \$320.8 billion was spent on structures in the US
 - 93% for new structures
 - In average 8% of GNP is spent for new facilities each year (US)

2	Industry	GNP Percentage	,
12	Manufacturing	3.2	5
	Mining	0.2	
	Railroad	0.2	
	Air and other transportation	0.3	
	Public utilities	1.6	
	Communication	1.0	
	Commercial and other	1.5	
	All industries	8.0	

Source: U.S. Bureau of Census.

Significance of facilities planning

 The size of the investment in new facilities each year makes the field important

Adequate facilities planning is not being performed

- Existing facilities cannot adapt to changes easier
- 20% to 50% of operating expenses are material handling cost
 - Facilities planning can reduce these costs by at least 10-30%.
 - If effective facilities planning were applied the annual manufacturing productivity in the US would increase 3 times!
- There exists a significant opportunity for improvement of facilities planning process!

Product, process and schedule design I.

- Chapter 2 of the textbook
 - Product design
 - Process design
 - Schedule design

Product, process and schedule design

Before we start developing alternative facility plans, we should have answers for the following questions

- I. What is to be produced?
- 2. How are the products to be produced?
- 3. When are the products to be produced?
- 4. How much of each product will be produced?
- 5. For how long will the product be produced?
- 6. Where will the products be produced?

Answer for the first 5 questions can be obtained from:

- Product design
- Process design
- Schedule design

Answer for the last question might be searched outside of the company -

global sourcing effect

Answers to these questions will help develop the first part of your term projects!

- Market analysis
- Product design
- Suppliers and vendors selection
- Equipment and personnel requirements
- Location selection
- Plant layouts designs (using CAD) and selection of the best
- Materials handling
- Life cycle analysis of both product and facility

Product, process and schedule design

- Product design:
 - Product designers determine:
 - Product specifications (dimensions, material, packaging, etc.)

• Process design:

- Process designers determine:
 - How the product will be produced
- Schedule design:
 - Production planners determine:
 - Production quantities
 - The schedules for the equipment

• WHERE DOES THE FACILITY PLANNER COME IN?

Figure 2.1 Relationship between product, process, and schedule (PP&S) design and facilities planning.

- Facility planner is dependent on timely and accurate input from product, process and schedule designers
- The need for close coordination among the four groups

Product Design

- Determination of a product to be produced
- Detailed design of the product

Product Design – Product Determination

- Based on input from:
 - Marketing
 - Manufacturing
 - Finance
 - Etc.
- Most of the time final decisions are made by the top management

Product Design – Product Determination

- Uncertainty regarding the mission of the facility
- The occupants of the facility may change frequently or may never change at all
 - If changes are likely a high degree of flexibility and a very general space
 - If a high degree of confidence about the products – the facility design should optimize the production of those products

Product Design – Detailed Design

- The detailed design of the product is influenced by aesthetics, function, materials and manufacturing considerations
- Quality Function Deployment translation of the customers' desires into product design, and subsequently into parts characteristics, process plans and production requirements.

Legends

- Ø Strong Relationship
- O Medium Relationship

∆ Weak Relationship

Benchmarking – used to identify the approach of the competition

Product Design – Detailed Design

- Finally, detailed designs take place (CAD designs, prototypes, assembly designs, 2D drawings and dimension determinations)
- **Concurrent Engineering** is a systematic way of enabling communication between all the related units during the product development
 - The aim is to minimize the changes in design parameters once the design is finalized
 - 70% of the manufacturing cost is set during the design phase
 - Changing the design later in the process costs significantly more

Cost of design changes

Design phase determines the most of the costs associated with delivering a product. Typically, 70-80% of the cost of a product is fixed at the design stage.

Sequential development method

Concurrent development method

INDU 421 - FACILITIES DESIGN AND MATERIAL HANDLING SYSTEMS

Product Design - Documentation

- Once the product design is completed, usually following documents are provided for the facilities planning process as inputs
 - Exploded assembly drawing omits specifications and dimensions
 - Exploded parts photographs
 - Component part drawing detailed

DRAWING NO.	4482
DRAWING TYPE	EXPLODED Assembly
PREPARED BY	FRAZELLE
CHECKED BY	DEW
DATE	3-14-31
COMPANY	ARNELL, INC.

Figure 2.3 Exploded parts photograph.

Figure 2.4 Component part drawing of a plunger.

Next lecture

- Process design
- Schedule design