Flow, space and activity relationships I.

- Departmental Planning
- Manufacturing cells
 - Clustering algorithms for cell formation

Flow, Space and Activity Relationships

- Flow
 - Flow into, within and from manufacturing facility
 - Flow of materials, people, equipment, information, money, etc.
- Space
 - The amount of space required in the facility
 - Workstation specification, department specification and other space requirements
- Activity relationships
 - Activity relationship is the key input in facilities design
 - Defined by flow relationships, organizational relationships, environmental relationships, process relationships and control relationships

Departmental planning

- Production planning departments are collections of workstations to be grouped together during the facilities layout process
- Combining workstations that perform similar functions:
 - Similar products or components
 - Similar processes
- Classification of layouts based on product volume-variety:
 - Product layout (flow shop)
 - Fixed product layout
 - Group layout
 - Process layout (job shop)

Departmental planning

Product	Layout	Combining workstations
StandardizedLarge stabledemand	•Product layout (flow shop)	•Combine all workstations required to produce the product
 Physically large Awkward to move Low sporadic demand 	•Fixed product layout	•Combine all workstations required to produce the product with the area required for staging the product
•Capable of being grouped into families of similar parts	•Group layout (product family layout)	•Combine all workstations required to produce the family of products
 None of the above 	•Process layout (job shop)	Combine identical workstations into departmentsCombine similar departments

Production volume and product variety determines type of layout

Production Variety

Group Technology – Cellular Manufacturing

 Group technology (product family) departments aggregate medium volume-variety parts into families based on similar manufacturing operations and design attributes.

Similar design attributes, different manufacturing requirements

Different design attributes, similar manufacturing requirements

Group Technology – Cellular Manufacturing

Group technology (product family) departments aggregate
 medium volume-variety parts into families based on similar
 manufacturing operations and design attributes.

Group Technology – Cellular Manufacturing

- Manufacturing cells group machines, employees, materials, tooling and material handling and storage equipment to produce families of parts.
- Manufacturing cell operation needs minimum external support
- Often designed, controlled and operated using JIT, TQM and TEI
- Benefits of cell manufacturing:
 - **Reduction:** inventories, space, paperwork, equipment, transportation, etc.
 - **Simplification:** communication, handling, scheduling, etc.
 - Improvement: productivity, flexibility, quality, customer satisfaction, etc.

Cellular Manufacturing

• Evaluation of cell design decisions

System structure

Equipment and tooling investment	Low
Equipment relocation cost	Low
Inter and intra cell material handling cost	Low
Floor space requirement	Low
Extend to which parts are completed in a cell	High
Flexibility	High

System operation

Equipment utilization	High
Work-in-process inventory	Low
Queue lengths at each work station	Low
Job throughput time	Short
Job lateness	Low

Before GT

Before GT

• After GT

Manufacturing cell forming

- Successful implementation requires addressing selection, cell design, cell operation and cell control issues
- Manufacturing cell forming:
 - Classification
 - Production flow analysis
 - Clustering methodologies
 - Heuristic procedures
 - Mathematical models
- Cell forming is seldom the responsibility of a facility planner

Clustering methodologies

- Group parts together so that they can be processed as a family
- Links parts and machines in

machine-part matrix

Machine-part matrix

Clustering methodologies

- Group parts together so that they can be processed as a family
- Links parts and machines in

machine-part matrix

Machine-part matrix

Direct clustering algorithm (DCA)

- I. Form machine-part matrix
- 2. Sum the 1s in each column & row
- 3. Order the rows in descending order
- 4. Order the columns in ascending order
- 5. Sort the columns (1 in the first row moves left, then in the second row, etc.)
- 6. Sort the rows (1 in the first column moves upward, then in the second column, etc.)
- 7. Form sells

2. Sum the 1s in each column & row

- 3. Order the rows in descending order
- 4. Order the columns in ascending order

5. Sort the columns (1 in the first row moves the column to the left, then 1 in the second row, etc.)

Figure 3.4 Column-sorted machine-part matrix.

6. Sort the rows (1 in the first column moves the row upward, then 1 in the second column, etc.)

Figure 3.4 Column-sorted machine-part matrix.

7. Form cells

• Cell #1:

• Machines 2,4 and 5

• Cell #2:

Machines 1and 3

 Machine 2 which is needed for parts #3 and #5 creates conflicts!

What can we do?

- Possible solutions:
 - Locate the bottleneck machines close to each other :
 - in different cells
 - at the boundary between cells
 - Redesign the parts
 - Outsource the parts
 - Duplicate machines

Duplicating machines

DCA

Create only 2 cells

Part #	3	1	26	25	24	21	16	15	14	13	22	18	17	11	9	8	6	5	23	20	19	12	10	7	4	2
13	1	1	1	1	1	1	1	1	1	1																
12	1	1	1	1	1	1	1	1	1	1																
11	1	1	1	1	1	1	1	1	1	1																
10	1	1	1	1	1	1	1	1	1	1																
7	1	1									1	1	1	1	1	1	1									
6	1	1									1	1	1	1	1	1	1									
5	1	1									1	1	1	1	1	1	1									
4	1	1				Cel					1	1	1	1	1	1		1								
з	1	1									1	1	1	1	1	1		1								
2	1	1									1	1	1	1	1	1		1								
1	1	1									1	1	1	1	1	1		1				Ce	IIВ	£		
9																			1	1	1	1	1	1	1	1
8																			1	1	1	1	1	1	1	1

Place the bottleneck machines at the boundary of the cells

Duplicate the bottleneck machines

(c)

Can the problem be solved by redesigning or outsourcing?

- Binary ordering algorithm (Rank ordering algorithm) considers the rows and columns as binary strings
- Procedure:
 - I. Compute the decimal equivalent of the binary strings for rows
 - 2. Reorder the rows in decreasing order of their binary value
 - 3. Compute the decimal equivalent of the binary strings for columns
 - 4. Reorder the columns in decreasing order of their binary value
 - 5. If the machine-part matrix is unchanged, then stop, else repeat

• Machine-part matrix

TABLE 12.3	Mac	chine-C	ompone	ent Mati	rix									
Machines	Components													
	1	2	3	4	5	6	7	8	9	10				
MI	1	1	1	1	1		1	1	1	1				
M2		1	1	1					1	1				
M3	1				1	1	1							
M4		1	1	1				1	1	1				
M5	1	1	1	1	1	1	1	1						

1. Assign binary weights from right to left for components and calculate the decimal equivalent for each row (machine)

					Comp	onents		No.11	0.04	1220	ALC: UNK
	1	2	3	4	5	6	7	8	9	10	
Machines	29	2 ⁸	27	26	Binary 2 ⁵	weigh 2⁴	t 2 ³	2 ²	2 ¹	20	decimal equivalent
M1	1	1	1	1	1		1	1	1	1	1007
M ₂		1	1	1					1	1	451
M ₃	1				1	1	1				568
M ₄		1	1	1				1	1	1	455
M ₅	1	1	1	1	1	1	1	1			1020

- 2. Rank the machines according to their decimal equivalent computed in the previous step
- 3. Assign binary weights from bottom up for machines and calculate the decimal equivalent for each column (part)

		Components												
		1	2	3	4	5	6	7	8	9	10			
	Binary	Binary weight												
Machines	weight	29	28	27	26	25	24	23	22	21	20			
M ₅	24	1	1	1	1	1	1	1	1					
M ₁	2 ³	1	1	1	1	1		1	1	1	1			
M ₃	22	1				1	1	1						
M ₄	21		1	1	1				1	1	1			
M ₂	20		1	1	1					1	1			
Column dec equivalent	imal	28	27	27	27	28	20	28	26	11	11			

TABLE 12.5 Row Arrangement in Decreasing Order of the Decimal Weights

- Reorder the columns in decreasing order of their binary value
- If the machine-part matrix is unchanged, then stop, else repeat

						Comp	onents	\$				
		1	5	7	2	3	4	8	6	9	10	
Machines	Binary weight	29	28	27	26 E	linary 2 ⁵	weigl 2 ⁴	$\frac{ht}{2^3}$	2 ²	21	20	Row decimal equivalent
M ₅		1	1	1	1	1	1	1	1			1020
M ₁	24 2 ³	1	1	1	1	î	î	î	ndin	1	1	1019
M ₃	2 ²	1	1	1	m eter				1	el rea		900
M_4	2 ¹				1	1	1	1		1	1	123
M_2	20				1	1	1			1	1	115
Column de equivalent	cimal	28	28	28	27	27	27	26	20	11	11	in 11 - Mariana

TABLE 12.6 One Solution for the Example Using ROC Algorithm

- 1. Select any row and cross it
- 2. For each crossed 1 make a vertical line
- 3. For each crossed 1 make a horizontal line
- 4. Repeat until all the 1s are crossed by a vertical line or by a horizontal line
- 5. Form a cell from all the machines and components which were crossed
- Remove all the crossed elements (machines and components) and start again

1. Select any row and cross it

2. For each crossed 1 make a vertical line

3. For each crossed 1 make a horizontal line

4. Repeat until all the 1s are crossed by a vertical line or by a horizontal line

5. Form a cell from all the machines and components which were crossed

First cell is identified! Cell #1 will produce parts P2, P3, P5 and P8 with Machines M1, M5 and M7

6. Remove all the crossed elements (machines and components) and start again

Cell #2 will produce parts P1 and P6 with Machines M2 and M4

6. Remove all the crossed elements (machines and components) and start again

Cell #3 will produce parts P4 and P7 with Machines M3 and M6

• Three resulting cells:

- In the real-world cases the solution will rarely be straightforward. The algorithm may determine all the parts to be produced in one cell
- Cost Analysis Algorithm allows to:
 - determine the number of machines
 - consider the cost of subcontracting

- 1. Cross a column with the highest cost
- 2. Make a horizontal line for each crossed 1
- 3. Form a group of parts which are crossed only by the horizontal lines
 - For each part apply the basic Cluster Identification Algorithm
 - Start always with the part of the highest cost
 - If the max number of machines ends up to be higher, the part is an exception (to be subcontracted)
 - See if you can continue to reach the maximum number of machines
- 4. Form a cell with the parts and machines which are crossed
- 5. Eliminate the exceptions and the pieces belonging to the created cell, form a new Machine-part matrix and start again

1. Cross a column with the highest cost

2. Make a horizontal line for each crossed 1

 Form a group of parts which are crossed only by the horizontal lines and for each part apply the basic algorithm

3. Apply the basic algorithm for part P7 – P7 is ACCEPTED

3. Apply the basic algorithm for part P2 – P2 is ACCEPTED

3. Apply the basic algorithm for part P4 – more than 4 machines would be necessary - **P4 is an EXCEPTION**

3. Apply the basic algorithm for part P6 – P6 is ACCEPTED

3. Apply the basic algorithm for part P1 – more than 4 machines would be necessary - **P1 is an EXCEPTION**

3. Apply the basic algorithm for part P9 – more than 4 machines would be necessary – **P9 is an EXCEPTION**

4. Form a cell with the parts and machines which are crossed

Cell #1 will produce parts P2, P3, P6 and P7 with Machines M1, M4 and M7

 Eliminate the exceptions and the pieces belonging to the created cell, form a new Machine-part matrix and start again

	P5	P8	P10	P11	Cell #2 will produce
M2	1			1	parts P5, P8, P10 and
M3			1	1	P11 with Machines
M5	1	1			M2, M3, M5 and M6
M6		1	1		
Cost	15	7	30	4	

Analysis of the exceptions: Parts P4, P1 and P9 – as discussed previously

Next lecture

• Quiz

Next lecture

- Activity relationships
- Flow patterns
- Flow planning
- Measuring the flow
- Space requirements