Flow, space and activity relationships I.

- Departmental Planning
- Manufacturing cells
- Clustering algorithms for cell formation

Flow, Space and Activity Relationships

- Flow
- Flow into, within and from manufacturing facility
- Flow of materials, people, equipment, information, money, etc.
- Space
- The amount of space required in the facility
- Workstation specification, department specification and other space requirements
- Activity relationships
- Activity relationship is the key input in facilities design
- Defined by flow relationships, organizational relationships, environmental relationships, process relationships and control relationships

Departmental planning

- Production planning departments are collections of workstations to be grouped together during the facilities layout process
- Combining workstations that perform similar functions:
- Similar products or components
- Similar processes
- Classification of layouts based on product volume-variety:
- Product layout (flow shop)
- Fixed product layout
- Group layout
- Process layout (job shop)

Fixed product layout

Group layout

Departmental planning

Product

-Standardized

- Large stable demand
-Physically large
-Awkward to move
-Low sporadic demand
-Capable of being grouped into families of similar parts
- None of the above

Layout

-Product layout
(flow shop)
-Fixed product layout
-Group layout
(product family layout)
-Process layout (job shop)
-Combine all workstations required to produce the product with the area required for staging the product

Combining workstations

-Combine all workstations required to produce the product
-Combine all workstations
required to produce the family of products
-Combine identical workstations into departments
-Combine similar departments

Production volume and product variety determines type of layout

Group Technology - Cellular Manufacturing

- Group technology (product family) departments aggregate medium volume-variety parts into families based on similar manufacturing operations and design attributes.

Different design attributes, similar manufacturing requirements

Group Technology - Cellular Manufacturing

- Group technology (product family) departments aggregate medium volume-variety parts into families based on similar manufacturing operations and design attributes.

Unorganized parts

Parts organized by families

Group Technology - Cellular Manufacturing

- Manufacturing cells group machines, employees, materials, tooling and material handling and storage equipment to produce families of parts.
- Manufacturing cell operation needs minimum external support
- Often designed, controlled and operated using JIT,TQM and TEI
- Benefits of cell manufacturing:
- Reduction: inventories, space, paperwork, equipment, transportation, etc.
- Simplification: communication, handling, scheduling, etc.
- Improvement: productivity, flexibility, quality, customer satisfaction, etc.

Cellular Manufacturing

- Evaluation of cell design decisions

System structure

Equipment and tooling investment	Low
Equipment relocation cost	Low
Inter and intra cell material handling cost	Low
Floor space requirement	Low
Extend to which parts are completed in a cell	High
Flexibility	High

System operation

Equipment utilization	High
Work-in-process inventory	Low
Queue lengths at each work station	Low
Job throughput time	Short
Job lateness	Low

Before GT

After GT

- Before GT

- After GT

Manufacturing cell forming

- Successful implementation requires addressing selection, cell design, cell operation and cell control issues
- Manufacturing cell forming:
- Classification
- Production flow analysis
- Clustering methodologies
- Heuristic procedures
- Mathematical models
- Cell forming is seldom the responsibility of a facility planner

Clustering methodologies

- Group parts together

Machine-part matrix

Clustering methodologies

- Group parts together so that they can be processed as a family
- Links parts and machines in machine-part matrix

	Machine \#				
Part \#	5	4	2	3	1
	1	1	1		
6	1	1			
5			1		
				1	1
1				1	1
2					1

Machine-part matrix

Direct clustering algorithm (DCA)

।. Form machine-part matrix
2. Sum the 1 s in each column \& row
3. Order the rows in descending order
4. Order the columns in ascending order
5. Sort the columns (1 in the first row moves left, then in the second row, etc.)
6. Sort the rows (1 in the first column moves upward, then in the second column, etc.)
7. Form sells

Direct clustering algorithm

2. Sum the 1 s in each column \& row
3. Order the rows in descending order
4. Order the columns in ascending order

Machine \#						
Part \#	5	4	3	2	1	\# of 1s
3	1	1		1		3
6	1	1				2
4			1		1	2
1			1		1	2
5				1		1
2					1	1
$\#$ of 1 s	2	2	2	2	3	

Direct clustering algorithm

5. Sort the columns (1 in the first row moves

 the column to the left, then 1 in the second row, etc.)

Figure 3.3 Ordered machine-part mat

Figure 3.4 Column-sorted machine-part matrix.

Direct clustering algorithm

6. Sort the rows (1 in the first column moves the row upward, then 1 in the second column, etc.)

Figure 3.4 Column-sorted machine-part matrix.

Figure 3.5 Row-sorted machine-part

Direct clustering algorithm

7. Form cells

- Cell \#1:
- Machines 2,4 and 5

	Machine \#				
Part \#	5	4	2	3	1
	1	1	1		
6	1	1			
5			1		
4				1	1
1				1	1
2					1

Direct clustering algorithm "bottleneck machines"

| | Machine \# | | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Part \# | 1 | 2 | 3 | 4 | 5 | |
| \# of 1 s | | | | | | |
| | 1 | | 1 | | | 2 |
| 2 | 1 | | | | | 1 |
| 3 | | 1 | | 1 | 1 | 3 |
| 4 | 1 | | 1 | | | 2 |
| 5 | | 1 | 1 | | | 2 |
| 6 | | | | 1 | 1 | 2 |
| \# of 1s | 3 | 2 | 3 | 2 | 2 | |

Figure 3.7 Machine-part matrix.

Figure 3.8 Ordered machine-part matrix

- Machine 2 which is needed for parts \#3 and \#5 creates conflicts!

Direct clustering algorithm "bottleneck machines"

What can we do?
(c)

Direct clustering algorithm "bottleneck machines"

- Possible solutions:
- Locate the bottleneck machines close to each other :
- in different cells
- at the boundary between cells
- Redesign the parts
- Outsource the parts
- Duplicate machines

Direct clustering algorithm "bottleneck machines"

- Duplicating machines

Duplicated machine 2

Duplicated machine 3

Direct clustering algorithm "bottleneck machines"

Create only 2 cells

(a)

(b)

(c)

Can the problem be solved by redesigning or outsourcing?

Binary Ordering Algorithm

- Binary ordering algorithm (Rank ordering algorithm) considers the rows and columns as binary strings
- Procedure:
I. Compute the decimal equivalent of the binary strings for rows

2. Reorder the rows in decreasing order of their binary value
3. Compute the decimal equivalent of the binary strings for columns
4. Reorder the columns in decreasing order of their binary value
5. If the machine-part matrix is unchanged, then stop, else repeat

Binary Ordering Algorithm

- Machine-part matrix

TABLE 12.3 Machine-Component Matrix

	Components										
Machines	1	2	3	4	5	6	7	8	9	10	
M1	1	1	1	1	1		1	1	1	1	
M2	1	1	1					1	1		
M3	1	1	1	1	1	1	1				
M4	1	1	1	1	1	1	1	1	1	1	
M5	1										

Binary Ordering Algorithm

1. Assign binary weights from right to left for components and calculate the decimal equivalent for each row (machine)

TABLE 12.4 Decimal Equivalents for Each Row

Machines	Components										decimal equivalent
	1	2	3	4	5	6	7	8	9	10	
	Binary weight										
	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{3}	2^{0}	
M_{1}	1	1	1	1	1		1	1	1	1	1007
M_{2}		1	1	1					1	1	451
M_{3}	1				1	1	1				568
M_{4}		1	1	1				1	1	1	455
M_{5}	1	1	1	1	1	1	1	1			1020

Binary Ordering Algorithm

2. Rank the machines according to their decimal equivalent computed in the previous step
3. Assign binary weights from bottom up for machines and calculate the decimal equivalent for each column (part)

TABLE 12.5 Row Arrangement in Decreasing Order of the Decimal Weights

						Cor	ents				
		I	2	3	4	5	6	7	8	9	10
	Binary					inar	,				
Machines	weight	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{\prime}	2°
M_{5}	2^{4}	1	1	1	1	1	1	1	1		
M ${ }_{1}$	2^{3}	1	1	1	1	1		1	1	1	1
M_{3}	2^{2}	1				1	1	1			
M_{4}	2^{1}		1	1	1				1	1	1
M_{2}	2^{0}		1	1	1					1	1
Column decimal equivalent		28	27	27	27	28	20	28	26	11	11

Binary Ordering Algorithm

4. Reorder the columns in decreasing order of their binary value
5. If the machine-part matrix is unchanged, then stop, else repeat

TABLE 12.6 One Solution for the Example Using ROC Algorithm

						Comp	nents.					
		1	5	7	2	3	4	8	6	9	10	
	Binary					nary	weigh					Row decimal
Machines	weight	2^{9}	2^{8}	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{i}	2°	equivalent
M_{5}	2^{4}	1	1	1	1	1	1	1	1			1020
M	2^{3}	1	1	1	1	1	1	1		1	1	1019
M_{3}	2^{2}	1	1	1					1			900
M_{4}	2^{1}				1	1	1	1		1	1	123
M_{2}	2^{0}				1	1	1			1	1	115
Column decimal equivalent		28	28	28	27	27	27	26	20	11	11	

Cluster Identification algorithm

1. Select any row and cross it
2. For each crossed 1 make a vertical line
3. For each crossed 1 make a horizontal line
4. Repeat until all the 1 s are crossed by a vertical line or by a horizontal line
5. Form a cell from all the machines and components which were crossed
6. Remove all the crossed elements (machines and components) and start again

Cluster Identification algorithm

1. Select any row and cross it

	$P 1$	$P 2$	$P 3$	$P 4$	$P 5$	$P 6$	$P 7$	$P 8$
M1		I	I		I			
M2	1					1		
M3				1			1	
M4						1		
M5							1	
M6				1				
M7		1		1		1		

Cluster Identification algorithm

2. For each crossed 1 make a vertical line

Cluster Identification algorithm

3. For each crossed 1 make a horizontal line

Cluster Identification algorithm

4. Repeat until all the 1 s are crossed by a vertical line or by a horizontal line

Cluster Identification algorithm

5. Form a cell from all the machines and components which were crossed

	P2	P3	P5	P8
M1	1	1	1	
M5				
M7			1	1

First cell is identified!
Cell \#1 will produce parts P2, P3, P5 and P8 with Machines M1, M5 and M7

Cluster Identification algorithm

6. Remove all the crossed elements (machines and components) and start again

Cell \#2 will produce parts P1 and P6 with Machines M2 and M4

Cluster Identification algorithm

6. Remove all the crossed elements (machines and components) and start again

Cell \#3 will produce parts P4 and P7 with Machines M3 and M6

Cluster Identification algorithm

- Three resulting cells:

Cost Analysis Algorithm

- In the real-world cases the solution will rarely be straightforward. The algorithm may determine all the parts to be produced in one cell
- Cost Analysis Algorithm allows to:
- determine the number of machines
- consider the cost of subcontracting

Cost Analysis Algorithm

1. Cross a column with the highest cost
2. Make a horizontal line for each crossed 1
3. Form a group of parts which are crossed only by the horizontal lines

For each part apply the basic Cluster Identification Algorithm

- Start always with the part of the highest cost

0 If the max number of machines ends up to be higher, the part is an exception (to be subcontracted)

- See if you can continue to reach the maximum number of machines

4. Form a cell with the parts and machines which are crossed
5. Eliminate the exceptions and the pieces belonging to the created cell, form a new Machine-part matrix and start again

Cost Analysis Algorithm

1. Cross a column with the highest cost

	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11
M1		1	I				1				
M2	1				1						1
M3										1	1
M4	1		1			1					
M5					1			1			
M6	1			1				1	1	1	
M7			1	1		1	1		1		
Cost	2.5	8.0	70.0	6.0	15.0	5.0	10.0	7.0	2.0	30.0	4.0

Cells can have a maximum of 4 machines

Cost Analysis Algorithm

2. Make a horizontal line for each crossed 1

Cost Analysis Algorithm

3. Form a group of parts which are crossed only by the horizontal lines and for each part apply the basic algorithm

Cost Analysis Algorithm

3. Apply the basic algorithm for part P7-P7 is ACCEPTED

Cost Analysis Algorithm

3. Apply the basic algorithm for part $\mathbf{P 2} \mathbf{- P 2}$ is ACCEPTED

Cost Analysis Algorithm

3. Apply the basic algorithm for part P4 - more than 4 machines would be necessary - P4 is an EXCEPTION

Cost Analysis Algorithm

3. Apply the basic algorithm for part P6 - P6 is ACCEPTED

Cost Analysis Algorithm

3. Apply the basic algorithm for part P1 - more than 4 machines would be necessary - $\mathbf{P 1}$ is an EXCEPTION

Cost Analysis Algorithm

3. Apply the basic algorithm for part P9 - more than 4 machines would be necessary - P9 is an EXCEPTION

Cost Analysis Algorithm

4. Form a cell with the parts and machines which are crossed

Cell \#1 will produce parts P2, P3, P6 and P7 with Machines M1, M4 and M7

Cost Analysis Algorithm

5. Eliminate the exceptions and the pieces belonging to the created cell, form a new Machine-part matrix and start again

	P 5	P 8	P 10	P 11
M 2	1			1
M3			1	1
M5	1	1		
M6		1	1	
Cost	15	7	30	4

Cost Analysis Algorithm

Exceptions

Analysis of the exceptions: Parts P4, P1 and P9

- as discussed previously

Next lecture

- Quiz

Next lecture

- Activity relationships
- Flow patterns
- Flow planning
- Measuring the flow
- Space requirements

