

Flow, Space and Activity Relationships II.

- Chapter 3 of the textbook
- Activity relationships
- Flow
- Space

Flow, Space and Activity Relationships II.

- Activity relationships
 - Activity relationships are the key input in facilities design
- Flow
 - Flow of materials, people, equipment, information, money, etc.
 - Flow patterns, flow measuring and graphical analysis of the flows

Space

- The amount of space required in the facility
- Workstation specification, department specification and other space requirements

Activity Relationships

- Activity relationships are the key input in facilities design
- Defined by:
 - Flow relationships
 - Organizational relationships
 - Environmental relationships
 - Control relationships
 - Process relationships

Segments of flow

Flow Patterns

Within the overall flow environment, a critical consideration is the pattern of flow.

• Flow within workstations

- Motion studies and ergonomics considerations
- Flow should be simultaneous, coordinated, symmetrical, natural, rhythmical, and habitual

Flow within departments

Is dependent on the type of department (product vs. process dept.)

• Flow between departments

Used to evaluate overall flow within facility

Product departments flow: in a product and/or product family department

- **Process departments flow:** in a process department
 - Little flow between workstations
 - Flow occurs between workstations and aisles

Flow within departments with material handling considerations → Line flow patterns

Flow within departments with material handling considerations \rightarrow Spine, tree and loop flow patterns

Flow Patterns: Flow between Departments

 Flow within a facility considering the locations of entrance and exit

At the same location

On adjacent sides

On the same side

Flow Patterns: Flow between Departments

Flow within a facility - pattern categories

Conventional structure

Spine structure

Loop structure

Tandem structure

Flow Planning

• The effective flow within a facility depends on effective *flow between departments*. Such flow depends on effective *flow within departments,* which depends on effective *flow within workstations*.

Signs of a good general flow pattern

- A flow starts at receiving and terminates at shipping.
- Straight and short lines of flow
- Minimum backtracking
- Material is moved directly to point of use
- Minimum WIP
- Flow pattern is easily expandable, new processes can easily be merged in

Maximize directed (uninterrupted) flow paths

 Minimize backtracking: Backtracking increases the length of the flow path

Effects of backtracking in a unidirectional loop flow system

- Minimize flow
 - Deliver materials, information, or people directly to the point of ultimate use
 - Plan for flow between two consecutive points of use to take place in a few moments as possible
 - Combine flows and operations
- Maximize directed flow path
- Minimize the cost of the flow
 - Minimize manual handling (automate or mechanize the flow)
 - Minimize trips of empty carriers

Measuring Flow

- Quantitative flow measurement
 - Large volumes of materials, information, a number of people moving between departments
 - In terms of amount moved or distance travelled
- Qualitative flow measurement
 - Very little actual movement of materials, information, and people flowing between departments
 - Significant communication and organizational interrelation between departments
 - In terms of the level of relationship between units (departments) in the organizations
- Usually both measurements are used

Graphical tools for analysis and design of material flow system

- We already know:
 - Assembly chart -

- Operations process chart
- Facility planning specific tools:
 - Flow process chart
 - Flow diagram
 - From-to chart
 - Relationship chart
 - Relationship diagram

Flow process chart

Flow Process Chart is similar to Operations Process
Chart
OPERATION PROCESS CHART

Flow process chart

- Flow Process Chart is similar to Operations Process Chart
- It shows assemblies, operations, and inspections, but also material handling and storage.

Permanent storage

Flow process chart

FLOW PROCES	FLOW PROCESS CHART						NUMB	NUMBER PAGE NO. 1			NO. 0	PAC	iES		
	959 I Stanista	197. 		_	-			1	-	-	12.00	1	1 .		-
POCE 55				1	-		-		- 3	UNMART	-				-
Breakout of Ship's Stor	e Stoc	:k		_		AC	TIONS		PR	SENT	PRO	POSED	DIFE	EREN	
HAN OR S HATERIAL					0	OPER	ATTONS	8	NO. 7	1111	NO.	TIME	¥0.	10	34
				-	ň	TRANSPORTATIONS 5 117								1	
HART BEGINS	73 10	to Account File I			INSP	ECTION	15	4	45			100			
NS 973 prepareo	13 10	BATE	-	-	R	DELA	15	2.53	2	45					
J.P. Denton LTJG,SC,USNR	1	1 Aug	. 19		V	5708	AGES	_	1	-		1	-	_	_
REALIZATION	enarti	ment			DIS	TANCI	E TRAV	ELLED	1	060				_	
Sales Division, Supply	1 1			-		ANAL	VSIS	de se se se	les les	0.5-02			A	ALYS	515
DETAILS OF FROPOSED METHOD	OPERATION	INSPECTION DELAY STORAGE	DISTANCE IN	OUMATITY OUNA	1 iK	5 114144	1010 Later		12	NOTE	5		EVIN INATE	NUMBER OF	E 101034
1 NE 073 or on a red	Q				20									4	
Placed in Sales Officer's	* O	DOD			30									1	
³ Approved by Sales Office:	. 0	500V			5						_				1
Returned to Recordskeepe Incoming basket	r's 0	DOD			15									11	
Recordskeeper notifies S	75 0	¢∐o⊽	800		30	1		Ne	cest	ary				x	+
5/S and Bulk operators p up 973's at Sales Office	ick O	DDD	300		30	1	11	Ne	ces	sary	2			×	ļ
Quantities delivered ente on original by Bulk oper	ato Q	¢⊡D⊽			15	1	11		_		1722		+	+	+
Rechecked and signed by Bulk operator	0	ODD⊽	1		5	1	Щ	Re	vie	wed t	for	accu	rac	4	-
Quantities received ente on copy by S/S operator	red	QODV		1	15	1	111	-	_		-		+		-
Rechecked and signed by operator	s/s 0	ODDA		-	5	1	11	Rev	iew	ed f	ora	accur	acy		-
Original and copy return 11 to recordskeeper	ed O	60DD	7 <u>BOC</u>	>	30	4	41	-	-	_			-		
Original and copy compar by recordskeeper	ed O	o ∄D⊽	1	-	20		111	Rev	/iew	ed f	ora	accui	ac		ł
If quantities match, rec 13 keeper seeks S/S Op.	orco	¢DDV	150	>	25		11	Neo	ess	ary?	_	-	+	-	-
^{1*} S/S Op. signs original	¢		1	-	15			+-					-	-	+
If quantities do not man sales officer investigat	tes C	¢007	1	+	1.	-		1					-	+	+
Completed original exter and posted	1000		1	1	30	2		-	-	1000			-	++	+
Original forwarded to	C	2000	71				111	1						11	

Flow diagram

Flow Diagram is a flow process chart spread over the layout of the corresponding area.

From-To Chart

From-To Chart measures the flows between departments

It resembles mileage charts

To	Atlanta, GA	Boston, MA	Chicago, IL	Dallas, TX	New York, NY	Pittsburgh, PA	Raleigh, NC	San Francisco, CA
Atlanta, GA		1037	674	795	841	687	372	2496
Boston, MA	1037		963	1748	206	561	685	3095
Chicago, IL	674	963		917	802	452	784	2142
Dallas, TX	795	1748	917		1552	1204	1166	1753
New York, NY	841	206	802	1552		368	489	2934
Pittsburgh, PA	687	561	452	1204	368		445	2578
Raleigh, NC	372	685	784	1166	489	445		2843
San Francisco, CA	2496	3095	2142	1753	2934	2578	2843	

Figure 3.29 Mileage chart.

Figure 3.30 Triangular mileage chart.

From-To Chart - procedure

- List all departments down the row and across the column following the overall flow pattern.
- Establish a measure of flow for the facility that accurately indicates equivalent flow volumes.
 - If the items moved are equivalent (size, weight, value, risk of damage, shape), the measure could be the number of the trips
 - If the items moved vary, then *equivalent items* may be established so that the quantities recorded in the From-To Chart represent the proper relationships among the volumes of movement.
- Record the flow volumes in the From-To Chart based on the flow paths for the items to be moved and the established measure of flow

From-To Chart

1

1

3

7

Possible alternative layouts:

Stores	Milling	Turning	Press	Plate	Assembly	Warehouse

(b)

(d)

From-To Chart – Example with equivalent items

Cor	nponent	Production Quantity	Routing			
	1	30	A-C-B-D-E			
Ì	2	12	A-B-D-E			
	3	7	A-C-D-B-E			

Components 1 and 2 are equivalent with respect to movement, but component 3 is almost twice as large as 1 or 2

	F	ro	m	ן-י	Гс) (Ch	ar	t
	Stores	Milling	Turning	Press	Plate	Assembly	Warehouse		
Stores	_	24	12	16	1	8	_		
Milling	_	_	_	_	14	3	1		_
Turning	_	3	_	—	8	_	1		7
Press	_	_	_	—	3	1	1		
Plate	_	3	2	—	_	4	3		
Assembly	2	_	—	_	_	_	7		
Warehouse	_	_	_	_	_	_	_		

Frequency table

Frequency table

Frequency chart

Y			
Flow egments	Departments	Frequency	
1	Stores-Milling	24	
2	Milling-Plate	14+3=17	
3	Stores-Press	16	
4	Stores-Turning	12	
5	Stores-Assembly	8+2=10	
6	Turning-Plate	8+2=10	
7	Assembly-Warehouse	7	
8	Plate-Assembly	4	
9	Milling-Assembly	3	
10	Turning- Milling	3	
11	Press-Plate	3	
12	Plate-Warehouse	3	
13	Stores-Plate	1	
14	Milling -Warehouse	1	
15	Turning-Warehouse	1	
16	Press-Assembly	1	
	Press-Warehouse	1	
17			

Relationship Chart

 Relationship Chart measures the flows qualitatively using the closeness relationships values

		Rating	Definition
1. Stores	A	А	Absolutely Necessary
2. Milling	I	Е	Especially Important
		Ι	Important
3. Turning		0	Ordinary Closeness
4. Press		U	Unimportant
		Х	Undesirable
5. Plate			
6. Assembly			
7. Warehouse	* *		

Relationship Chart

- Due to the great variety and multiplicity of relationships involved, it is advisable to construct separate relationship charts for each major relationship being measured:
 - material flow
 - personnel flow
 - information flow
 - organizational, control, environmental, and process relationships, etc.

Relationship Chart

Relationship Chart may include the closeness values in conjunction with *reasons for the value*

1. Directors conference room	$\overline{\}$	Code	Reason
		1	Frequency of use high
2. President		2	Frequency of use medium
2 Salas donartmont	5 U 3 0	3	Frequency of use low
3. Sales department	U 6 0 2 U	4	Information flow high
4. Personnel	6 I 5 U 3 U	5	Information flow medium
		6	Information flow low
5. Plant manager	$\begin{array}{c} 5 & 0 & 5 & 0 & 6 & 1 & 3 & U \\ \hline A & 5 & 0 & 5 & E & 4 & 0 & 6 \end{array}$	\rightarrow	1
6. Plant engineering office	4 A 5 0 4 I 5	Rating	Definition
		А	Absolutely Necessary
7. Production supervisor	40504 U 5 E 5	E	Especially Important
9 Controllar office	6 0 4	Ι	Important
o. Controller office	I 5	Ο	Ordinary Closeness
9. Purchasing department	4	U	Unimportant
		Х	Undesirable

Relationship Diagram

 Transformation of the proximity relationships to a spatial organization of departments

Relationship Chart

	D1	D2	D3	D4	S1	S2
Dept.1		Х	U	E	U	0
Dept.2			Α	U	Х	I
Dept.3				U	U	U
Dept.4					U	Α
Storage 1						Α
Storage 2						

Relationship Diagram

Value	Closeness Priority	Line Code
A	Absolutely important	
E	Specially important	
L	Important	
0	Ordinary	
U	Indiference	
x	Undesireble	$\sim \sim \sim \sim$

Relationship Diagram

	D1	D2	D3	D4	S1	S2
Dept.1		Х	U	E	U	0
Dept.2			А	U	Х	Ι
Dept.3				U	U	U
Dept.4					U	А
Storage 1						А
Storage 2						

Initial Diagram

First iteration

Second iteration (might be the optimum)

Relationship Diagram – systematic procedure

- Place the departments among which there is "A" relationship
- Add the departments among which there is "E" relationship to the previously placed departments. Rearrange.
- Add the departments among which there is "X" relationship to the previously placed departments. Rearrange.
- Add the departments among which there is "I" relationship. Rearrange.
- Add the departments among which there is "O" relationship. Rearrange.
- Add the rest of the departments. Rearrange.
- Verify if all the departments are placed and if the important relations are respected

Space Requirements

- Perhaps the most difficult determination in facilities planning is the amount of space required in the facility!
- Space requirements should be determined:
 - for individual workstations
 - department requirements

Workstation Requirements

Equipment space

- The equipment
- Machine travel
- Machine maintenance
- Plant services

Materials space

- Receiving and storing materials
- In-process materials
- Storing and shipping materials
- Storing and shipping waste and scrap
- Tools, fixtures, jigs, dies, and maintenance materials

Personnel area

- The operator (motion & ergonomic study)
- Material handling
- Operator way in and way out

Departmental Specification

- Once the space requirements for the workstations have been determined, the department space requirements should be defined.
- Departmental area:
 - Sum of areas of workstations
 - Equipment maintenance
 - Tooling, dies, plant services
 - Storage area
 - Spare parts etc.
 - Material handling within department
 - Aisle space

Aisle AllowanceIf the Largest Load IsPercentage Is^a Less than 6 ft²5-10Between 6 and 12 ft²10-20Between 12 and 18 ft²20-30Greater than 18 ft²30-40

These may be shared!

Departmental Specification

 The total area required for the department is determined on Departmental Service and Area Requirement Sheet

Company Department		A.B. Tu	C., Inc. rning		Preparec Date	l by	J.A.		Sheet	: 1 of 1
<u></u>		Sei	vice Requireme	nts						
Work	Compressed				Floor	Ceiling	Area (square feet)			
Station	Quantity	Power	Air	Other	Loading	Height	Equipment	Material	Personnel	Total
Turret lathe	5	440 V AC	10 CFM @ 100 psi		150 PSF	4'	240	100	100	440
Screw machine	6	440 V AC	10 CFM @ 100 psi		190 PSF	4'	280	240	120	640
Chucker	2	440 V AC	10 CFM @ 100 psi		150 PSF	5'	60	100	40	200
200 200								Ne	t area required	1280

DEPARTMENTAL SERVICE AND AREA REQUIREMENT SHEET

13% aisle allowance 167

Total area required 1447

Einste 2.26 Desertes et en sies en disse service en state h

Next lecture

Material handling